Inhibitory mechanism of Escherichia coli RelE-RelB toxin-antitoxin module involves a helix displacement near an mRNA interferase active site.
نویسندگان
چکیده
In Escherichia coli, RelE toxin participates in growth arrest and cell death by inducing mRNA degradation at the ribosomal A-site under stress conditions. The NMR structures of a mutant of E. coli RelE toxin, RelE(R81A/R83A), with reduced toxicity and its complex with an inhibitory peptide from RelB antitoxin, RelB(C) (Lys(47)-Leu(79)), have been determined. In the free RelE(R81A/R83A) structure, helix alpha4 at the C terminus adopts a closed conformation contacting with the beta-sheet core and adjacent loops. In the RelE(R81A/R83A)-RelB(C) complex, helix alpha3(*) of RelB(C) displaces alpha4 of RelE(R81A/R83A) from the binding site on the beta-sheet core. This helix replacement results in neutralization of a conserved positively charged cluster of RelE by acidic residues from alpha3(*) of RelB. The released helix alpha4 becomes unfolded, adopting an open conformation with increased mobility. The displacement of alpha4 disrupts the geometry of critical residues, including Arg(81) and Tyr(87), in a putative active site of RelE toxin. Our structures indicate that RelB counteracts the toxic activity of RelE by displacing alpha4 helix from the catalytically competent position found in the free RelE structure.
منابع مشابه
Structural mechanism of transcriptional autorepression of the Escherichia coli RelB/RelE antitoxin/toxin module.
The Escherichia coli chromosomal relBE operon encodes a toxin-antitoxin system, which is autoregulated by its protein products, RelB and RelE. RelB acts as a transcriptional repressor and RelE functions as a cofactor to enhance the repressor activity of RelB. Here, we present the NMR-derived structure of a RelB dimer and show that a RelB dimer recognizes a hexad repeat in the palindromic operat...
متن کاملThe Crystal Structure of the Intact E. coli RelBE Toxin-Antitoxin Complex Provides the Structural Basis for Conditional Cooperativity
The bacterial relBE locus encodes a toxin-antitoxin complex in which the toxin, RelE, is capable of cleaving mRNA in the ribosomal A site cotranslationally. The antitoxin, RelB, both binds and inhibits RelE, and regulates transcription through operator binding and conditional cooperativity controlled by RelE. Here, we present the crystal structure of the intact Escherichia coli RelB2E2 complex ...
متن کاملExpression, Purification, and Functional Analysis of Novel RelE Operon from X. nematophila
Bacterial toxin-antitoxin (TA) complexes induce programmed cell death and also function to relieve cell from stress by various response mechanisms. Escherichia coli RelB-RelE TA complex consists of a RelE toxin functionally counteracted by RelB antitoxin. In the present study, a novel homolog of RelE toxin designated as Xn-relE toxin from Xenorhabdus nematophila possessing its own antitoxin des...
متن کاملThree new RelE-homologous mRNA interferases of Escherichia coli differentially induced by environmental stresses
Prokaryotic toxin - antitoxin (TA) loci encode mRNA interferases that inhibit translation, either by cleaving mRNA codons at the ribosomal A site or by cleaving any RNA site-specifically. So far, seven mRNA interferases of Escherichia coli have been identified, four of which cleave mRNA by a translation-dependent mechanism. Here, we experimentally confirmed the presence of three novel TA loci i...
متن کاملRelE-mediated dormancy is enhanced at high cell density in Escherichia coli.
Bacteria show remarkable adaptability under several stressful conditions by shifting themselves into a dormant state. Less is known, however, about the mechanism underlying the cell transition to dormancy. Here, we report that the transition to dormant states is mediated by one of the major toxin-antitoxin systems, RelEB, in a cell density-dependent manner in Escherichia coli K-12 MG1655. We co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 284 21 شماره
صفحات -
تاریخ انتشار 2009